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Implementation Attacks 

• Critical information leaked through side channels 

• Adversary can extract critical secrets (keys etc.) 

• Usually require physical access (proximity) 
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Ways to Prevent Power Analysis 

Hiding: Decreasing Signal to Noise ratio 
Noise generator, randomized execution order, 
dual-rail/asynchronous logic styles… 
Problem: some signal remains, 
resynchronization, etc. 

 
Masking: Randomized internal states 
additive/multiplicative masks, Higher-order 
masking 
Problem: leakage remains, masks also leak 
 
Effective methods are costly! 
Every single countermeasure can be overcome. 
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Masking (concept) 

No Masking: 

 

 

 

Masking: 

Internal State:   𝑦 
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Mask ensures that all internal states are equally likely 



Low Entropy Masking Schemes 

Goal: Lower implementation cost at comparable security: 
– no 1st order leakage:  
– Resistance against DPA/CPA 

 
• Masks 𝑚 are from a subset of {0,1}n   

low entropy masks 
 

• Self-Complementary Property for masks: ℳ = ℳ  
– For leaking 𝑦𝑚, there is a 𝑦𝑚′ = 𝑦𝑚 , i.e. bitwise inverse also 

possible 
the average leakage is constant 

 

Claim: 𝐼(𝑦𝑚, 𝑦) ≈ 0  negligible mutual information 
 This is true if uniform input distribution is assumed 



If we fix an input 𝑥: 

Classic Masking: all intermediate values appear 
with equal probability 

LEMS: Only few intermediate values possible 
Full Entropy Masking Schemes (FEMS)  Low Entropy Masking Schemes (LEMS) 
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Leakage Distribution 

• Observed distribution for fixed input is mixture 
(sum) of leakage of possible masked values  

 Distributions for different inputs 𝒙 are 
distinguishable 

Leaking Values Sub-distributions 
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Observed 

Leakage Distribution Decomposition Attack 

Concept: How to test subkey hypothesis: 
1. Fix input 𝑥 and predict leaking set 𝑦 ℳ  
2. Get sub-distributions and rebuild mixture 

 output is leakage distribution for 𝑦ℳ  
3. Measure closeness between observed  

and rebuilt distributions 
Repeat for all inputs 𝑥 and all subkey hypotheses 𝑔 



LDDA: Practicality  

Problem: How to estimate sub-distributions? 
 

LDDA with profiling: 
• Assumes known masks during profiling 
• Similar to template-like attacks on masking: 

[SLP05,OM07,LP07] 

• Difference: Univariate leakage sufficient! 
 

LDDA without profiling: 
• Assumes linear leakage model, e.g. Hamming weight  

(similar to linear regression methods) 
• Works with unknown masks 
• Again, univariate leakage sufficient! 



Outline 

• Masking and Low Entropy Masking (LEMS) 

• Ways to exploit remaining leakage 

• Collision Attacks on LEMS 

• Results on DPA contest v4 traces 

 



Side Channel Collisions in AES 

S S S S S S SS S S S S S S

y1 y4 = y1 

plaintext 

Add_Key 

Sub_Bytes 

S-box 1 S-box 4 

Collision: Querying same S-box value twice 
 

Collision Attack: Exploiting collision detections 
to recover secret key  



How to Improve Collisions 

Collisions: Simple approach, but requires strong leakage 

Improvement: Correlation Collision Attack [MME10] 

– Use many measurements 

– Compute average for each possible output 

– Use all S-box output leakages for comparison 

Strong attack, breaks many protected implementations 

 

 



Leaking Set Collision Attack 

• Find two different inputs 𝑥 ≠ 𝑥′for which the 
leaking set 𝑦 ℳ is identical 

• Exists due to self-complementary masks 𝑚,𝑚  

e.g. AES s-box output: 
𝑆 𝑥 ⊕ 𝑘 ⊕ 𝑚 = 𝑆 𝑥′ ⊕ 𝑘 ⊕ 𝑚  
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Leaking Set Collision Attack (II) 

• For correct key guess: 𝑦′ = 𝑦  

 

 

 
 

• For wrong key guess: 𝑦′ ≠ 𝑦  

 

 

 

• Distance Metric: Kolmogorov-Smirnov (KS-distance) 

 

 

 

Fix input x 

 𝑥’ = 𝑓(𝑥, 𝑔 ≠ 𝑘) 

Find 𝑥’ 
𝑥’ = 𝑓(𝑥, 𝑘) 
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Leaking Set Collision 

 𝑦 ℳ = 𝑦′ ℳ 

𝑦 ℳ  

𝑦′ ℳ  

𝑦′ ℳ  
 𝑦 ℳ ≠ 𝑦′ ℳ 



Leaking Set Collision Attack (III) 

1. Derive set collisions for masked AES Sbox output 
𝑥’ = 𝑓 𝑥, 𝑘 =  𝑘 ⊕ 𝑆−1(0xff ⊕ 𝑆(𝑥 ⊕ 𝑘)) 

1. Compare observed leakage distributions 

2. Choose key guess with lowest distance 

Correct Hypothesis 
 Low Distance 



Leaking Set Collision Attack (IV) 

• Like Correlation Collision Attack, all traces are 
grouped and compared 

• Unlike correlation collision attacks, works on 
inputs for the same s-box 
(same univariate leakage point) 

• Needs sufficient measurements to 
approximate distribution 
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Experimental Results 

Target: RSM AES-256 software implementation  
from DPA contest v4: 

– 8-bit microcontroller (strong leakage) 

– 16 self-complementary masks 

– 100.000 traces available  
(known mask and key) 

– Attack performed  
on s-box output 
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LDDA with profiling 

• 50,000 traces to build univariate templates  
(i.e. sub-distributions) 

• 8k traces to test subkey hypotheses (2k, 16k next slide) 

• Mask known  
during profiling 

• KS-distance (y-axis) 
to measure similarity 

 

 

 



LDDA with profiling 

• Overall distance decreases 
• Correct key is better distinguishable with increased 

number of measurements 

2k traces for testing 16k traces 



LDDA without profiling 

• Assumed leakage model: Hamming Weight 

• Parameters estimated over all traces 

• Outcome depends on parameter choice 

 

 

 

 

• Attack feasible even with imperfect model 

Number of Traces 20k 40k 60k 80k 100k 

GE average case 19.74 16.65 4.02 2.93 1.31 

GE worst case 30 33 11 9 5 

GE best case 9 2 2 1 1 



Leaking Set Collision Attack 

 

 

 

 

 

Clear distinguishability with 16k traces 

 

Number of Traces 16 x 256 32 x 256 48 x 256 64 x 256 

Guessing Entropy 46.78 17.78 7.00 1.00 

1st order Succ Rate 5.56% 44.4% 83.3% 100.0% 

4th order Succ Rate 33.3% 55.6% 83.3% 100.0% 



Conclusions 

• Low-entropy masking schemes have 
distinguishable leakage distributions 

• “Efficient” univariate attacks exploiting this 
leakage are available 

• Self-complementary masks enable self-
collision attacks: Leaking Set Collision Attacks 
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